# Part Three: Problem Sets

### Problem Set A

- 1 Given:  $\overline{AB} \cong \overline{DE}$ .  $\overline{BC} \cong \overline{EF}$ ,
  - $\overline{AC} \cong \overline{DF}$
  - Prove:  $\angle A \cong \angle D$



- **2** Given:  $\angle$ HGJ  $\cong$   $\angle$ KJG,
  - $\angle KGJ \cong \angle HJG$
  - Conclusion:  $\overline{HG} \cong \overline{KJ}$



- 3 Given: ⊙O,
  - RO ⊥ MP
  - Prove:  $\overline{MR} \cong \overline{PR}$



- 4 Given: T and R trisect SW.
  - $\overline{XS} \cong \overline{XW}$
  - $\angle S \cong \angle W$
  - Prove:  $\overline{XT} \cong \overline{XR}$



- **5** Given:  $\angle B \cong \angle Y$ ;
  - C is the midpt. of BY.
  - Conclusion:  $\overline{AB} \cong \overline{YZ}$



- 6 Given: ⊙O,
  - $\overline{CD} \cong \overline{DE}$
  - Prove:  $\angle COD \cong \angle DOE$



- 7 Find, to the nearest tenth, the area and the circumference of a circle whose radius is 12.5 cm.
- **8**  $\triangle ABC \cong \triangle DEF$ ,

  - $\angle A_{\leq 0} = 90^{\circ}$ ,  $\angle B = 50^{\circ}$ ,  $\angle C = 40^{\circ}$ ,  $\angle E = 12x + 30$ ,  $\angle E = \frac{y}{2} 10$ ,
  - $m \angle D = \sqrt{z}$
  - Solve for x, y, and z.





## Problem Set A, continued

9 Given: FH bisects ∠GFJ and ∠GHJ.

Conclusion:  $\overline{FG} \cong \overline{FJ}$ 



10 Given:  $\angle M \cong \angle R$ ,

 $\angle RPS \cong \angle MOK$ ,

 $\overline{MP} \cong \overline{RO}$ 

Conclusion:  $\overline{KM} \cong \overline{RS}$ 



11 Explain why the area of the shaded region is  $100 - 25\pi$ .



# **Problem Set B**

12 Given: H is the midpt. of  $\overline{GJ}$ .

M is the midpt. of  $\overline{OK}$ .

 $\overline{GO} \cong \overline{JK}$ ,

 $\overline{GI} \cong \overline{OK}$ ,

 $\angle G \cong \angle K$ ,

OK = 27,

OK = 27,  

$$m\angle GOH = x + 24$$
,  $m\angle GHO = 2y - 7$ ,

 $m \angle JMK = 3y - 23$ ,  $m \angle MJK = 4x - 105$ 

Find: m∠GOH, m∠GHO, and GH

13 Given:  $\angle A \cong \angle E$ ,  $\overline{AB} \cong \overline{BE}$ ,

 $\overline{FB} \perp \overline{AE}$ ,

 $\angle 2 \cong \angle 3$ 

Prove:  $\overline{CB} \cong \overline{DB}$ 



14 Given:  $\angle 5 \cong \angle 6$ ,

 $\angle JHG \cong \angle O$ ,

 $\overline{GH} \cong \overline{MO}$ 

Conclusion:  $\angle J \cong \angle P$ 



**15** Given:  $\angle RST \cong \angle RVT$ ,

 $\angle RVS \cong \angle TSV$ 

Conclusion:  $\overline{RS} \cong \overline{VT}$ 



16 Given:  $\angle 7 \stackrel{\checkmark}{\cong} \angle 8$ ,  $\overline{ZY} \cong \overline{WX}$ 

Prove:  $\angle W \cong \angle Y$ 



17 Given:  $\angle AEC \cong \angle DEB$ ,

 $\overline{BE} \cong \overline{CE}$ ,

 $\angle ABE \cong \angle DCE$ 

Prove:  $\overline{AB} \cong \overline{CD}$ 



18 Given:  $\overline{KG} \cong \overline{GJ}$ ,

 $\angle 2 \cong \angle 4$ ,

 $\angle 1$  is comp. to  $\angle 2$ .

 $\angle 3$  is comp. to  $\angle 4$ .

 $\angle FGJ \cong \angle HGK$ 

Conclusion:  $\overline{FG} \cong \overline{HG}$ 



19 a Find the coordinates of point P.

b Find the area of the circle.



20 Given: ⊙O,

 $\overline{PQ} \cong \overline{QR}$ 

Prove: QÓ bisects ∠PQR.



## **Problem Set C**

21 Given:  $\overline{AE} \cong \overline{FC}$ ,

 $\overline{FB} \cong \overline{DE}$ ,

∠CFB ≅ ∠AED

Prove:  $\angle 1 \cong \angle 2$ 

