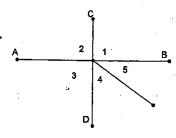
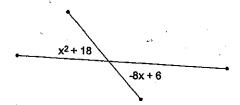

- 1. If an \angle measures 68° 28′ 14″, what's the measure of its complement of half this angle?
- 2. The measure of an angle is 4 times the measure of its complement. What's the supplement of the angle?

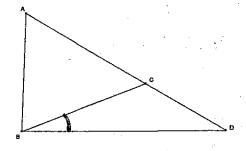
Fill in the blank:


- 3. If 2 angles are complementary, then they both have to be
- 4. Angles that are supplementary and congruent are _____
- 5. The supplement of an obtuse angle has to be ___
- 6. Find x.

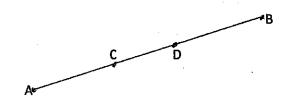

7. Find the $m \angle 1$.

8. AB \perp CD. The measure of \angle 4 and \angle 5 are in the ratio 7:5. What are the measures of $\angle 4 \& \angle 5$?

9. Find x in the diagram below:



- 10. $\angle R = 132^{\circ}$. $\angle R$ is bisected, then one of the resulting angles is trisected. What's the measure of one of the smallest angles?
- If 2 \angle s are supplementary to the same \angle , then they are _ 11. each other.
- 12. One of 2 supplementary angles is 4 more than twice the other. What is the measure of the What's the measure of the complement of the angle?
- 13. The measure of the supplement of an angle plus the complement of the same angle is 168°. What's the measure of the original angle?
- 14. Use the diagram at right. Find x & y.

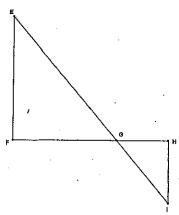

Given: ABLBD

$$\angle ACB = x + y$$

 $\angle BCD = 2x + 4$

$$\angle ABC = x + 20$$

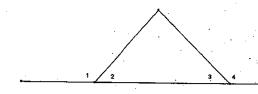
15. AB = 24, AD = 14, $\overline{AD} \cong \overline{CB}$ CD = _____ AC = ____



16. ∠ABC suppl ∠DEF, ∠GHI suppl ∠DEF. $\angle ABC = 5x - 3 \& \angle GHI = 3x + 27$ Find *m*∠DEF

19.

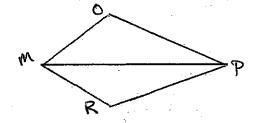
Given: $\angle E \cong \angle EGF$, $\angle I \cong \angle HGI$


Prove: ∠E ≅ ∠I

Statement		Reason		
1.		1. Given		
2.		2. Vertical Angles Thm		
3. ∠E≅∠I		3.		

20. Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$


Statement	Reason		
1.	1. Given		
2. ∠1 Suppl to ∠2 ∠3 Suppl to ∠4	2.		
3	3. Congruent Supplements Thm		

21. Given: $\angle OMP \cong \angle RPM$

. MP bisect ∠OMR

PM bisect ∠OPR

Prove: ∠OMR≅∠OPR

